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A B S T R A C T

Solar-Induced Chlorophyll Fluorescence (SIF) has been increasingly used as a novel proxy for vegetation
productivity. Several space-borne instruments can retrieve SIF at varying overpass time, which complicates
the interpretation as SIF is driven by absorbed Photosynthetically Active Radiation (PAR) at the acquisition
time. To facilitate comparisons across sensors, satellite-based SIF is upscaled to daily averages with a length-
of-day correction factor (DC). In conventional DC calculations, the light intensity over a day is approximated
geometrically by the cosine of the Solar Zenith Angle (SZA), neglecting changes in atmospheric extinction and
topographic effects. Here, we use reanalysis PAR data for DC calculations to evaluate the impact of atmospheric
extinction and diffuse radiation individually. We find that the simple SZA approach is a reliable approximation
for flat surfaces, where the overall atmospheric impact on DC is less than 10% as large individual effects on
direct and diffuse PAR partially compensate each other. At longer time-scales, a sampling (clear sky) bias might
exist due to cloud-filtering of satellite data. We find that in the Amazon the true monthly mean PAR can be
25% lower than the one for cloud-filtered days, potentially inducing seasonal SIF biases on the same order.
An additional factor impacting PAR during a day is topography. For complex terrain, direct light in the DC
expression requires a correction for surface slopes. For example in the San Gabriel Mountains, California, USA,
the modified DC is changed by as much as 500% for strongly tilted surfaces. This modification is especially
important for satellite instruments with fine spatial resolutions, where surface slopes are not averaged out
and can have a substantial impact on reflectance and SIF. Overall, our refined DC-corrections and averaging
strategy can help satellite SIF interpretation as well as intercomparisons over a wide range of spatio-temporal
scales and overpass times.
1. Introduction

Photosynthesis is the dominant driver of land-atmosphere carbon
exchange with poorly known climate feedbacks (Richardson et al.,
2013). Solar-Induced Chlorophyll Fluorescence (SIF) has become a
popular proxy for photosynthesis because it is linked to the electron
transport rate in the light reactions of photosynthesis (Porcar-Castell
et al., 2014). Many studies have used SIF to study photosynthesis on
the global scale (Mohammed et al., 2019), including the estimation of
gross primary production, canopy water deficit, and crop yield (Gentine
and Alemohammad, 2018; Zuromski et al., 2018; He et al., 2020).
Global scale studies in particular benefit from space-borne observations
of SIF, which are relatively coarse in the spatial domain but a valuable
tool for monitoring photosynthesis without requiring sub-pixel homo-
geneity. As more satellites measure SIF, comparisons across sensors are
challenging due to varying times of measurement (𝑡𝑚).

∗ Corresponding author at: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
E-mail address: rui.cheng@mit.edu (R. Cheng).

SIF inferred from satellite measurements (SIF𝑡𝑚 ) represents the radi-
ance emitted by chlorophyll that primarily depends on the amount of
Absorbed Photosynthetically Active Radiation (APAR) at 𝑡𝑚 (Magney
et al., 2020; Mohammed et al., 2019; Joiner et al., 2020), which is
a product of Photosynthetically Active Radiation (PAR) reaching the
canopy at 𝑡𝑚 and the fraction of PAR absorbed by the canopy (fPAR).
Because PAR varies across ground tracks (Köhler et al., 2018; Joiner
et al., 2020) and with satellite orbital parameters, while the diurnal
cycle of fPAR is negligible compared to the diurnal cycle of PAR (Lin
et al., 2019), SIF𝑡𝑚 is an instantaneous value associated with PAR at 𝑡𝑚.
In order to compare SIF across different satellites with various 𝑡𝑚 and
against daily mean gross primary production (Zhang et al., 2018b,a),
studies (Hu et al., 2018; Köhler et al., 2018; Zhang et al., 2018b;
Frankenberg et al., 2011) have to scale SIF𝑡𝑚 to a daily-average SIF
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Fig. 1. Schematic diurnal cycles of 𝜇, direct PAR (PARdirect) and total PAR (PARtotal)
under (a) clear-sky and (b) all sky conditions assuming the surface is flat, and (c) the
cosine of Solar Incidence Angle (cos(SIA)) under clear-sky condition.

(SIFdc) using a length-of-day correction factor (DC), which is calculated
based on the diurnal cycle of PAR under the assumption that SIF scales
linearly with PAR:

SIFdc = SIF𝑡𝑚 × DC , (1a)

DC = 1
PAR𝑡𝑚

∫

𝑡𝑚+12h

𝑡𝑚-12h
PARt 𝑑t . (1b)

Conventionally, the diurnal cycle of PAR in the calculation of DC
(Eq. (1)b) is approximated geometrically by the cosine of Solar Zenith
Angle (SZA), denoted as 𝜇 (Frankenberg et al., 2011; Köhler et al.,
2018) (Fig. 1a). Thus, the derivation of the DC can be simplified to

DCSZA = 1
𝜇𝑡𝑚 ∫

𝑡𝑚+12h

𝑡𝑚-12h
𝜇t (𝜇t) 𝑑t , (2)

where  is the Heaviside step function, i.e. zero for SZAs greater than
90◦ (nighttime).

This straightforward approach generates SIFdc via DCSZA without
the need to know true PAR as 𝜇𝑡 can simply be computed using
ephemeris calculators, which provide the solar geometry at a given
location and time based on orbital parameters of the Earth in the
solar system. The approximation is thus a simple yet possibly inac-
curate proxy for PAR at the top of canopy, as the approach neglects
atmospheric effects (Fig. 1b), e.g. changing cloud, as well as topog-
raphy (Frankenberg et al., 2011)(Fig. 1c). As there is no detailed
quantitative evaluation of the impact of atmospheric absorption and
scattering as well as topography on the DC calculation, the potential
errors in SIF averages are still hard to assess.

To characterize potential errors in conventional daily-average SIF
calculations as well as in temporal (e.g. monthly) averages, we have
to consider the following effects, illustrated using simple examples: (I)
Diurnal atmospheric effects: diurnal cycles in atmospheric conditions
(e.g. convective systems building up during a day) can cause biases
when using a simple geometric approach and these will depend on
the time of measurement; (II) Day-to-day atmospheric effects: cloud
2

filtering of satellite data can cause a clear-sky bias in longer-term SIF
averages, as the measurements passing the quality filters are more
likely obtained during cloud free days; (III) Topography effects: topog-
raphy can create highly asymmetric diurnal PAR cycles, as we have to
consider the geometry of a tilted surface with respect to the sun.

Our study aims to quantify these impacts individually so that SIF
measurements across sensors and temporal–spatial scales can be better
compared and interpreted. In Section 2, we develop correction models
(summarized in Table 1) for DC. Using global PAR datasets, solar angle
information, detailed topography, and actual SIF soundings, as outlined
in Section 3, we evaluate the DC calculations in Section 4. At the global
scale, we highlight areas where temporal upscaling SIF is prone to
biases by atmospheric effects and use regional examples to quantify
the individual bias in areas with strong seasonal variations in cloud
cover (e.g. the Amazon) and complex terrain (e.g. the San Gabriel
Mountains).

2. Methods

2.1. Atmospheric effects

2.1.1. Upscaling SIF𝑡𝑚 to SIFdc
Downwelling PAR at the surface can be divided into two compo-

nents: direct PAR (PARdirect) and diffuse PAR (PARdiffuse). PARdirect is
the transmitted part of the incoming collimated solar beam reaching
the surface after being diminished by atmospheric extinction by trace
gases, aerosols and clouds along the light path. Despite its reduced am-
plitude, PARdirect preserves the direction of the incoming PAR, which
is represented by the SZA. Because PAR at the top of atmosphere is
directly proportional to 𝜇, the difference between the diurnal cycles
of PARdirect and 𝜇 results from atmospheric extinction along the light
path. Hence, we can evaluate this impact on SIFdc by comparing DCSZA
with DCdirect, which is calculated with actual PARdirect:

DCdirect =
1

PARdirect,𝑡𝑚
× ∫

𝑡𝑚+12h

𝑡𝑚-12h
PARdirect,t 𝑑t. (3)

PARdiffuse is constituted by scattered PAR that ultimately reaches the
surface. PARdiffuse can also be the major energy source for photosynthe-
sis when PARdirect is strongly reduced through atmospheric scattering,
e.g. at high latitudes or in areas with frequent cloud cover. Thus, in
order to accurately account for changes in total PAR, a comprehensive
DC correction factor needs both PARdirect and PARdiffuse:

DCtotal =
1

(

PARdirect,𝑡𝑚 + PARdiffuse,𝑡𝑚

)

× ∫

𝑡𝑚+12h

𝑡𝑚-12h
(PARdirect,t + PARdiffuse,t) 𝑑t.

(4)

Thus, the difference between DCtotal and DCdirect is due to the impact
of diffuse light. It is worth noting that plants can use diffuse light more
efficiently than direct light (Gu et al., 2019, 1999; Lu et al., 2020), as
it is distributed more evenly across the top of the canopy. Here, we
neglect this and focus on variations in total PAR, i.e. assume that both
PARdirect and PARdiffuse have a similar impact on SIF.

To isolate the impact of clouds, we can make use of the fact that
meteorological reanalysis data are provided for both all-sky conditions
(including all atmospheric effects as modeled) as well as clear sky
conditions (providing radiation fields as if no clouds had been present).
This allows us to separate the atmospheric effects on SIFdc for cloud free
conditions in Section 4.1.1 and all-sky (i.e. most realistic) conditions in
Section 4.1.2. With the help of these globally modeled PAR datasets,
we can highlight regions where atmospheric effects are important to
consider in SIF with and without clouds.
dc



Agricultural and Forest Meteorology 327 (2022) 109197R. Cheng et al.

a
e
k
w
e
s

r
p
T
d
t

w

w
n

u
s
p
2

2

2

s
a
o
c
r

s
i
S
S
A
P
l
a
(
S
S
i
d

w
n

c
S
w
h
v
K
c
t
(
2

2.1.2. Upscaling SIFdc to monthly mean SIF (𝑆𝐼𝐹 )
In addition to scaling biases from the instantaneous SIF signal

to a diurnal average, sampling biases can occur when aggregating
individual daily averages in time, for instance to monthly scales. Unlike
vegetation indices, SIF is not only representing a slowly varying canopy
structure but is also driven by highly variable incoming PAR, which is
strongly impacted by clouds. As cloudiness is also as a selection criteria
for satellite data quality filtering, this can cause potential sampling
biases.

Often, monthly-mean SIF (SIF) is calculated as the cloud-filtered
rithmetic mean of SIFdc within the temporal averaging window (Sun
t al., 2018; Badgley et al., 2017). However, cloud filters preferentially
eep the soundings that are taken under low cloud cover (i.e. situations
ith higher PAR), which potentially result in a clear sky bias (Zhang
t al., 2020; Sun et al., 2018; Badgley et al., 2017) that can vary
easonally.

Thus, seasonal variations in the number of cloud-filtered soundings
elative to total number of soundings can be used as a metric for the
otential clear sky bias. In Section 4.1.3.1, we use statistics from the
ROPOspheric Monitoring Instrument (TROPOMI) as well as reanalysis
ata to investigate when and where globally the clear sky bias is likely
o occur.

To quantify the actual clear sky bias, Hu et al. (2021) suggested
eighing SIFdc by daily mean PAR. Here, we upscale SIFdc to SIF

using the daily mean all-sky PAR (PARday) just from measurement days
and from all days in a month. Then, the actual clear sky bias is the
difference between PAR-weighted SIF and the arithmetic SIF, which is
defined as

PAR-weighted SIF = 1
𝑁

𝑁
∑

day=1
PARday ×

1
𝑛

𝑛
∑

day=1

(

SIF𝑡𝑚 × DCtotal
)

day ∕PARday,

(5a)

arithmetic SIF = 1
𝑛

𝑛
∑

day=1

(

SIF𝑡𝑚 × DCtotal
)

day , (5b)

here 𝑁 is the total number of TROPOMI SIF soundings, and n is the
umber of cloud-filtered soundings.

In Section 4.1.3.2, we quantitatively demonstrate the clear sky bias
sing the Amazon Forests as an example, which exhibits a strong
easonal cycle in cloudiness as well as heavily debated responses of
hotosynthesis in the dry season (Saleska et al., 2007; Doughty et al.,
021; Samanta et al., 2010; Saleska et al., 2016; Morton et al., 2014).

.2. Topographic impact on upscaling SIF𝑡𝑚 to SIFdc

.2.1. Adjusting PAR according to topography
Previously, we only discussed atmospheric effects that can bias the

caling from instantaneous to daily average SIF. However, the slope
nd orientation of the surface can dramatically change the diurnal cycle
f received radiation, for example in east or west facing slopes, which
an have peak diurnal PAR shifted towards the morning and evening,
espectively.

In complex terrain, the diurnal cycle of direct PAR received by a
urface is not determined by the SZA but by the angle between the
ncident direct light and the surface normal (Solar Incidence Angle —
IA, Fig. 2a). For example, terrain oriented towards the sun (SIA <
ZA) receives substantially more direct light per projected unit area.
s a result, complex terrain results in spatially heterogeneous total
AR as well as the ratio of PARdiffuse and PARdirect. This can even
ead to spatial variations in hydro-climate conditions that vegetation
cclimates to Bilir et al. (2021), van der Tol et al. (2007) and Kutiel
1992). Therefore, neglecting the topographic impact on PAR can bias
IFdc as observed from space. Here, we aim to quantify this bias for
IFdc and validate our correction scheme using reflectances—which are
mpacted by the same bias—and classical vegetation indices, for which
3

irectional effects mostly cancel out.
Table 1
Summary of all DC models used in this study. A glossary of all variables used in this
study is in Appendix D.

DC models Atmospheric effects Topography Equation Results

Direct PAR Diffuse PAR

DCSZA ✗ ✗ ✗ (2)

DCdirect ✓ ✗ ✗ (3) Section 4.1.1
Section 4.1.2DCtotal ✓ ✓ ✗ (4)

DCDEM ✓ ✓ ✓ (11) Section 4.2

To evaluate this impact, we add topographic information to the
expression of DCtotal (Eq. (4)) on a flat surface.

We first correct PARdirect given the surface inclination angle (𝛽) and
azimuth angle (𝛼) using a simple photometric function (Klein, 1977;
Teillet et al., 1982):

PARdirect,DEM,t = PARdirect,t
cos(SIA)

𝜇t
(cos(SIA𝑡)). (6)

Given the geometry in Fig. 2, the SIA can be derived as

SIA = sin(SZA) sin(𝛽) cos(𝛼⊙ − 𝛼) + 𝜇 cos(𝛽), (7)

where 𝛼⊙ is solar azimuth angle (Duffie and Beckman, 2013).
We preserve the expression for PARdiffuse assuming isotropic diffuse

PAR, which is less dependent on surface orientation. Here, we only
include self-shading (i.e. if the SIA is larger than 90◦, no direct radiation
reaches the surface) but ignore shading by mountain ranges in the
vicinity. Thus, the total PAR projected on a tilted surface is:

PARtotal,DEM,t = PARdirect,t
cos(SIA)

𝜇t
(cos(SIA𝑡𝑚 )) + PARdiffuse,𝑡𝑚 . (8)

2.2.2. Validating the topographic adjustment on PAR
To validate this simple topographic adjustment on PAR in Eq. (8),

we make use of the fact that measured reflectances experience the same
bias if they are not topographically corrected. However, reflectance
ratios are not as affected as the bias cancels out in the ratio. Comparing
novel indices that might be susceptible to the topography bias against
those that are more robust with respect to slope variations thus provide
an indirect validation of our correction approach.

We first apply the adjusted PAR to reflectance (R):

RDEM = R ×
PARdirect,𝑡𝑚 + PARdiffuse,𝑡𝑚

PARdirect,DEM,𝑡𝑚 + PARdiffuse,𝑡𝑚
, (9)

here RDEM is the topographically corrected R (if the surface slope was
eglected during retrievals).

To intuitively interpret the topographic adjustment on PAR, we
ompare the Vegetation Indices (VIs) built with RDEM against R in
ection 4.2. We choose VIs that are proxies for the greenness of canopy,
hich varies across slopes, because spatially heterogeneous energy and
ydrological conditions in complex terrain cause spatial variations of
egetation distribution (Bilir et al., 2021; van der Tol et al., 2007;
utiel, 1992). Thus, the difference across VIs and topographically
orrected VIs are easy to observe in the context of topography. In
his study, we consider the Normalized Difference Vegetation Index
NDVI; Silleos et al. 2006), kernel-based NDVI (Camps-Valls et al.,
021), and NIRv (Badgley et al., 2017):

NDVI =
𝑅nir − 𝑅red
𝑅nir + 𝑅red

, (10a)

kNDVI = tanh(NDVI2), (10b)

NIRv = NDVI × 𝑅nir, (10c)

where Rnir and Rred are near-infrared reflectance and red reflectance.
For band-ratio VIs like NDVI and kNDVI, the corrections should be

negligible as measured reflected radiance in the red and NIR spectral
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Fig. 2. The Solar Incidence Angle (SIA) and Solar Zenith Angle (SZA) are not equivalent on a tilted slope as demonstrated in (a) a 3D view, (b) a front view, and (c) a top view.
SIA is the angle between the incident direct light and the tilted surface normal. SZA is the angle between the incident direct light and flat surface normal. SIA’ and SZA’ are the
projection of SIA and SZA on the front view, respectively. 𝛼⊙, 𝛽, and 𝛼 are solar azimuth angle, surface inclination, and surface azimuth, respectively.
bands are affected similarly by surface slope changes, because atmo-
spheric scattering is similar in both bands. It is a valid assumption as
both bands are spectrally nearby and only mildly impacted (less than
5%; Fig. 9) by Rayleigh scattering (Bates, 1984).

However, for more complex VIs such as the NIRv or the Enhanced
Vegetation Index (Xiao et al., 2003), the effect of surface slopes does not
cancel out. For NIRv, the effect is directly proportional to the bias in the
derived Rnir, which is why we focus on the simple NIRv correction here,
as it provides an analogue to our assumptions for the SIF correction.
Also because both NIRv and SIF are primarily driven by fPAR (Badgley
et al., 2017; Magney et al., 2020; Mohammed et al., 2019; Joiner et al.,
2020; Lin et al., 2019), correcting NIRv serves as an indirect validation
of the SIF validation.

2.2.3. Topographic adjustment on upscaling SIF𝑡𝑚 to SIFdc
The only difference between our topographic correction on R and

DC is that the R correction considers PAR at 𝑡𝑚 only, while the DC
correction requires the full diurnal cycle of PAR. This is because
reflectance-based VIs are related to intrinsic properties of the canopy,
such as the potential photosynthesis (Silleos et al., 2006; Badgley et al.,
2017; Xiao et al., 2003; Camps-Valls et al., 2021).

We derive a Digital Elevation Model (DEM) based length-of-day
correction DCDEM as:

DCDEM = 1
(

PARdirect,DEM,𝑡𝑚 + PARdiffuse,𝑡𝑚

)

× ∫

𝑡𝑚+12h

𝑡𝑚-12h
(PARdirect, DEM,t + PARdiffuse,t) 𝑑t

(11)

To focus on the topographic impact, we only use clear-sky PAR to
explicitly express DCDEM. The difference between DCDEM and DCtotal
reflects the topographic impact on SIFdc

In Section 4.2, we use the San Gabriel Mountains in California as an
example to evaluate the topographic impact on SIFdc aggregated across
various sensor footprints. The strong radiation contrast between north
and south facing slopes in the San Gabriel Mountains make this region
an ideal study site.

3. Data

3.1. Global PAR data

Because there is lack of global-scale ground observation of PAR, we
utilize global reanalysis radiation data from the ECMWF ReAnalysis
(ERA5), which assimilate various available observations. ERA5 data
have been validated independently and enable us to perform a much
more thorough analysis than any other dataset (Babar et al., 2019;
Urraca et al., 2018; Yang and Bright, 2020). We calculate PAR as a fixed
fraction (0.46) of the direct and diffuse surface downwelling shortwave
radiation (Zhang et al., 2020; Howell et al., 1983) obtained from
4

ERA5 hourly data in 2020 at 0.5◦ × 0.5◦ spatial resolution (Albergel
et al., 2018). ERA5 simulates downwelling shortwave radiation at the
surface both with clouds (all-sky conditions) and without clouds (clear-
sky conditions). In both cases, the ERA5 simulation uses the exact
same atmospheric conditions, such as temperature, humidity, ozone,
trace gases and aerosols (Muñoz-Sabater et al., 2021). Therefore, we
can differentiate the atmospheric impact under clear-sky and all-sky
conditions. The ERA5 variables are listed in Appendix B.

For the integrals in the DC expressions (Eqs. (3), (4), and (11)), we
interpolate hourly PAR data to 10-min time steps using cubic splines,
focusing on land pixels only.

3.2. Solar angles

Given 𝑡𝑚, longitude, and latitude of a surface point, Solar Zenith
Angle (SZA) and Solar Azimuth Angle (𝛼⊙) are calculated using the
PyEphem astronomy tool (https://github.com/brandon-rhodes/pyephe
m), which provides the exact Sun–Earth geometry at a given time using
orbital characteristics.

We obtain surface elevation (in meters; Fig. 7a) from the NASA
Shuttle Radar Topography Mission (SRTM) version 3 with 30-m spatial
resolution (NASA JPL, 2013). The inclination angle (𝛽) and azimuth
angle (𝛼) of surface pixels (Fig. 7b and c) are calculated from the surface
elevation using the hill shading algorithm (Horn, 1981) implemented
in RichDEM (Barnes, 2016). With SZA, 𝛼⊙, 𝛽, and 𝛼, we then calculate
SIA using Eq. (7).

3.3. SIF data

We use the TROPOMI SIF data described in Köhler et al. (2018) for
our analysis because TROPOMI provides a fine spatial and temporal
resolution (Köhler et al., 2018) and a much higher sampling frequency
compared to all current satellites that are capable of retrieving SIF. The
wide swaths with viewing angles of up to 60◦ allow for a near-daily
global coverage. In this study, we use two levels of processed TROPOMI
SIF products: (1) instantaneous SIF from individual soundings; and
(2) gridded SIF with a temporal resolution of 16 days and a spatial
resolution of 0.0833◦ × 0.0833◦ , which is aggregated from individual
SIF measurements in 2020. We grid all unfiltered TROPOMI soundings
as well as the filtered data with cloud fractions smaller than 0.8,
which also includes additional retrieval quality filter criteria and is
the suggested standard filter for public use of SIF data (Köhler et al.,
2018). We then compute the number of averaged soundings per grid
cell in both cloud-filtered (n) and unfiltered (N) cases, the latter of
which represents the total number of potential TROPOMI soundings.
We then evaluate the measurement yield in each grid, defined as the
fraction of measurements that passed the cloud filter (the ratio of n to
N), as a function of space and time.

https://github.com/brandon-rhodes/pyephem
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Fig. 3. The zonal-mean impact of atmospheric extinction and PARdiffuse on DC calculation under clear-sky conditions. DCs are calculated using clear-sky PAR. Zonal means are
calculated from land pixels only. Panels a and b show the daily integral of 𝜇 and PARdirect during daytime. Panel c is the daily integral of PARdiffuse relative to PARdirect. The ratio
of DCtotal to DCSZA (panels d, g, and j) underscores the total impact of atmospheric extinction and PARdiffuse. The ratio of DCdirect to DCSZA (panels e, h, and k) isolates the impact
of atmospheric extinction. The ratio of DCtotal to DCdirect (panels f, i, l) isolates the impact of PARdiffuse. Panels d–f assume the overpass time is 10 am Local Solar Time (LST).
Panels g–i assume the overpass time is at local noon. Panels j–l assume the overpass time is 2 pm LST. The black lines are the contour of SZA = 80◦ at 𝑡𝑚. SZA is greater than
80 ◦ north (south) of the contour in Northern (Southern) Hemisphere.
3.4. Reflectance data

We use R from LandSat Collection 2 Level 2 data (30-m spatial
resolution) on July 3, 2020. The mean LandSat 𝑡𝑚 in the San Gabriel
Mountains is 10:31 am Local Solar Time (LST) when SZA and 𝛼⊙ are
22.5◦ and 335.4◦ , respectively. The azimuth angle is measured in
degrees counter-clockwise from East. Then, the grids of R and surface
elevation products are matched and transformed to degrees using the
Geospatial Data Abstraction Library (GDAL; https://gdal.org), while the
30-m spatial resolution is preserved.

4. Results

Here, we discuss the impact of atmospheric variations on DC, both
for scaling from instantaneous SIF to daily averages as well as aggre-
gating daily SIF averages to longer-term temporal averages. The impact
of topography is discussed separately.
5

4.1. Atmospheric effects

4.1.1. Atmospheric effects on DC under clear-sky conditions
For clear-sky conditions, we first examine the validity of the simple

approximation used in DCSZA, where the diurnal cycle of PAR is ap-
proximated geometrically by 𝜇. Fig. 3a shows that the zonal-mean daily
integral of 𝜇(𝜇) is a smooth function of time and latitude, and the
spatiotemporal pattern is consistent with the daily integral of PARdirect
computed from ERA5 in Fig. 3b. The consistency confirms that DCSZA
mainly accounts for the diurnal cycle in PARdirect, as expected from
a geometric scaling using 𝜇. PARdiffuse is much smaller than PARdirect
(Fig. 3c) in most cases (especially for valid solar angles) and thus has
no large impact for clear-sky conditions.

DCtotal derived from the sum of PARdirect and PARdiffuse (Eq. (4))
is smaller than DCSZA but only by less than 10% assuming a 𝑡𝑚 at
noon local time (Fig. 3g). More importantly, the atmospheric impact on
DC /DC (left column in Fig. 3) is homogeneous across latitudes
total SZA

https://gdal.org
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Fig. 4. The zonal-mean impact of atmospheric extinction and PARdiffuse on DC calculation under all-sky conditions. DCs are calculated using all-sky PAR. Zonal means are calculated
from land pixels only. Panels a and b show the daily integral of 𝜇 and PARdirect during daytime. Panel c is the daily integral of PARdiffuse relative to PARdirect. The ratio of DCtotal to
DCSZA (panels d, g, and j) underscores the total impact of atmospheric extinction and PARdiffuse. The ratio of DCdirect to DCSZA (panels e, h, and k) isolates the impact of atmospheric
extinction. The ratio of DCtotal to DCdirect (panels f, i, and l) isolates the impact of PARdiffuse. Panels d–f assume the overpass time is 10 am LST. Panels g–i assume the overpass
time is at local noon. Panels j–l assume the overpass time is 2 pm LST. The black lines are the contour of SZA = 80◦ at 𝑡𝑚. SZA is greater than 80◦ north (south) of the contour
in Northern (Southern) Hemisphere.
and seasons, underlining that the simple geometric correction is not
creating spatially varying biases. For DC𝑑𝑖𝑟𝑒𝑐𝑡/DCSZA (center column in
Fig. 3), the patterns and amplitudes are similar to DCtotal/DCSZA but
have somewhat more absolute variations and spatio-temporal varia-
tions. This can only be explained by atmospheric aerosols in ERA5,
which can reduce direct and increase diffuse radiation, thus leading
to partial compensation in total PAR. Adding PARdiffuse to DCdirect has
an opposite but smaller impact (Fig. 3i) since PARdiffuse is larger for
longer light paths, which partially cancels out the error from ignoring
atmospheric extinction in the SZA approximation of PARdirect. It should
be mentioned that although the impact of PARdiffuse can be more
extreme at high latitudes during winter, SIF soundings are typically
filtered out due to limited light intensity when the SZA at 𝑡𝑚 is greater
than 80◦(regions north or south of the black lines in Fig. 3d–i).

The magnitude of biases in DCSZA, compared against DCtotal, de-
pends on 𝑡𝑚 as well. The ratio of DCtotal to DCSZA is less than 5% (Fig. 3d
and j) when 𝑡 is 10 am or 2 pm Local Solar Time (LST). As 10 am and
6

𝑚

2 pm are both about two hours away from local solar noon, local PAR
is almost identical at these times under clear-sky conditions. Hence,
Figs. 3d–f and Figs. 3j–l are symmetric. Overall, the errors in the simple
DCSZA approach when compared to using ERA5 PAR data (DCtotal) in
clear sky conditions are surprisingly small (< 10%) and can likely be
ignored.

4.1.2. Atmospheric effects on DC under all-sky conditions
To show the impact of clouds on DC, we repeat the calculations of

DCtotal and DCdirect as shown before with all-sky conditions. As ex-
pected, in all-sky conditions PARdirect is lower (Fig. 4b) while PARdiffuse
is higher compared to clear-sky conditions. In regions with frequent
cloud cover, such as the inter-tropical convergence zone (Fig. 4c),
PARdiffuse can often contribute equally to total PAR. Specifically at high
latitudes, PARdiffuse is larger than PARdirect due to longer atmospheric
light paths. In contrast, PARdiffuse in the subtropics is smaller because
of large-scale atmospheric subsidence, resulting in both a dry climate

and less frequent cloud cover.
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Fig. 5. The seasonal mean measurement yield of SIF soundings, defined as the fraction of measurements that passed the cloud filter (cloud fraction < 0.8), in (a) December,
January, and February; (b) March, April, and May; (c) June, July, and August; and (d) September, October, and November. The stippled areas are where the absolute difference
between (a) and (c) is larger than 40%. The red star in the Amazon is the location with regional maximum absolute difference between (a) and (c).
There is only a little increase in the overall magnitude of
DCtotal/DCSZA under all sky conditions (Figs. 4d, g, and j) compared
to the clear sky case (Figs. 3d, g, and j), even in regions with frequent
cloud cover. At first, this is surprising as we expected a much stronger
bias in DCSZA under cloudy conditions. If we consider direct light
only, the DCtotal/DCSZA variations are in fact much larger, with strong
latitudinal and temporal changes (Figs. 4e, h and k). In regions with
the highest discrepancies in DCtotal/DCSZA, much stronger PARdiffuse
due to cloud scattering in all-sky condition contributes more to DCtotal.
As can be seen in Fig. 4f, i and l, the impact of diffuse light can
increase the ratio of DCtotal/DCdirect by up to 30% and counteract the
variations in DCdirect/DCSZA. Hence, the aggregated atmospheric impact
(DCtotal/DCSZA) is more homogeneous across latitudes and time.

Under all-sky conditions, the atmospheric impact on DC is often
larger when 𝑡𝑚 is 2 pm (Fig. 4j–l), because convective systems often
forms clouds in the afternoons when the surface is heated. Thus, unlike
in the clear-sky case, Fig. 4d–f and j–i are asymmetric, which can
represent an important aspect for comparing satellites with different
overpass times.

Overall, this section highlights counteracting effects of scattering for
correcting biases in DCSZA. In clear-sky conditions, atmospheric extinc-
tion dominates the impact on DCtotal. In all-sky conditions, PARdiffuse
becomes more important, specifically in regions with frequent cloud
cover. The simple DCSZA approach is a surprisingly good proxy for
DCtotal in both cases, as overall changes in direct and diffuse PAR
negatively co-vary, reducing the bias to less than 10% at coarse spatial
and temporal scales.

4.1.3. Effects of cloud filtering on (𝑆𝐼𝐹 ) and clear sky biases
When using real satellite data for SIF, we have to take into account

that a clear sky sampling bias might exist, which can vary seasonally.
Based on reanalysis data, we can evaluate the potential impact and
identify regions in which seasonal biases can be most prominent.
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4.1.3.1. Spatial patterns of potential clear sky biases.
At the global scale, the measurement yield (n/N) varies spatially

and seasonally. The highest seasonal dynamic range in measurement
yields occurs in regions with strong seasonal cycles of cloudiness, such
as regions with monsoon climate including the Amazon, South of the
Sahel, India, and North Australia (stippled area in Fig. 5, indicating
> 40% seasonal variations in data yield). These regions with large
seasonal variation in SIF measurement yields are potentially subject to
seasonally varying clear sky biases.

For high latitudes and non-vegetated areas, such as over ice and
desert, the SIF measurement yield is the lowest (Fig. 5) due to high SZAs
during the shoulder seasons and polar nights (Fig. C.1). However, the
sampling rate during summer months is much better (Fig. C.2) thanks to
overlapping ground tracks (incomplete daily coverage occurs between
+/- 7deg). These changes in measurement yield at high latitudes are
mostly driven by the SZA cutoff and radiance thresholds, hence less
prone to clear-sky biases.

4.1.3.2. Quantitative clear sky bias in SIF seasonality.
How large can the clear sky bias actually be over different seasons?

Here, we demonstrate the impact of clouds on the SIF seasonality using
the Amazon as an example. We use individual TROPOMI measurements
falling into a 0.25◦ × 0.25◦ box around the location of the red star
in Fig. 6a, a region with highly varying data yields (2.75◦ N, 55.5◦ W)
from March, 2018 to October 2020. The measurement yield can de-
crease by up to 60% (Fig. 5 and Fig. 6b) during the wet season (shaded
periods in Fig. 6a) as fewer soundings pass the cloud filter. PAR-
weighted SIF is about 25% smaller than the arithmetic mean (Fig. 6c),
indicating that SIF may be overestimated during periods of frequent
cloud cover. Compared to biases in DC, the clear sky bias of > 10% can
thus be substantial. The overestimation is more significant when fewer
filtered soundings are available.

We compared the arithmetic SIF calculated from DCtotal in the
Amazon using all-sky PAR (as in Fig. 4) against clear-sky PAR (as in
Fig. 3), which highlights the impact of the diurnal cycle in cloudiness.
Although the amplitude of the diurnal cycle biases can be comparable
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Fig. 6. Impact of clear sky biases on the seasonality of SIF. In panel a, the scatters are the SIFdc of individual soundings, and the lines are arithmetic (solid) and PAR-weighted
(dashed) monthly mean SIF (SIF) filtered by the Cloud Fraction (cf) of 0.8 (blue) and 0.3 (red). Panel b demonstrates the number of SIF measurements filtered by the two cf
values, while the black curve is the monthly mean cf. The solid lines in panel c compare the ratio of PAR-weighted SIF to arithmetic SIF by the two cloud filters. Panel c also
compares the impacts of the clear sky bias (solid lines) and diurnal changes in cloudiness discussed in Section 4.1.3 (dashed lines with circles). The impact of clear sky bias is
defined as the ratio of PAR-weighted SIF to arithmetic SIF, where DCtotal is calculated from all-sky PAR for both SIF. The impact of diurnal changes in cloudiness is evaluated as
the ratio of arithmetic SIF with DCtotal calculated by all-sky PAR to clear-sky PAR. The shaded periods are wet seasons with high cf from October to May.
to the clear sky bias, the DC can either be over or underestimated,
unlike the consistent overestimation due to the clear sky bias (Fig. 6c).
A stricter cloud filter often has a larger impact on SIFdc, suggesting that
using a relaxed cloud filter can avoid some of the clear sky bias caused
by the diurnal changes in PAR.

Doughty et al. (2021) reported the seasonal dynamic range of the
arithmetic SIF is only about ± 20% of the annual average in Amazon
rain forests. An overestimation of SIF by 25% in wet seasons due to
the clear sky bias can cause large biases when interpreting this small
season dynamic of SIF. Therefore, the impact of cloudiness on both DC
and upscaling SIF to long-term averages should be considered.

4.2. Topographic effects

4.2.1. Validating the topographic corrections on PAR
The San Gabriel Mountains, California, USA (34◦N– 34.6 ◦N, 118.4

◦W – 117.4◦W) are located north of the Los Angeles basin and are
oriented east–west over 500 km, and their elevation ranges from 0
to more than 2500 m (Fig. 7). The mountains have higher vegeta-
tion coverage, inferred from NDVI, kNDVI, and NIRv, than the north
or south of the mountains where deserts and cities are located. In
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general, the south facing slopes are more barren than north facing
slopes (Fig. 8a) because strong radiation increases skin temperature and
potential evapotranspiration, which stresses plants in this dry climate.

Before examine the topographically corrected DC, we first validate
our topographic correction method on reflectance and VIs (). Our
topographic correction has no impact on NDVI and kNDVI, because the
correction factor cancels out for both indices. However, the correction
changes the NIRv (Figs. 8i and 9f), which scales with the derived RNIR
correction. As the San Gabriel Mountains are very rugged with surfaces
facing towards all azimuth directions (Fig. 7d), there are no large-scale
features on the map changing dramatically in NIRv before and after
the topographic correction (Fig. 8c and f). However, the NIRv values of
west(east)-facing slopes are higher(lower) after the correction (Fig. 8i).

Fig. 8d–e and g–h show that our topographic correction improves
the correlation coefficients (𝑟2) between NIRv and NDVI (kNDVI) by
11% (12%) in LandSat pixels where the absolute changes in NIRv is
larger than 0.02. For pixels with smaller changes in NIRv (between 0.01
and 0.02), the improvements in 𝑟2 are smaller (about 4%). Meanwhile,
the root mean squared errors (rmse) are also improved. The correlations
of NIRv with NDVI and kNDVI become nonlinear at high values, which
may be attributed to the saturation of NDVI and kNDVI.
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Fig. 7. Surface elevation (a), inclination (b), and azimuth (c) in the San Gabriel Mountains (CA, USA). Panel d shows the frequency distribution of inclination and azimuth from
30-m pixels binned by 2◦ intervals. Azimuth is measured in degrees counter-clockwise from East.

Fig. 8. Impact of topographic correction on surface reflectance using the San Gabriel Mountains (CA, USA) as example, with a LandSat satellite overpass local time 𝑡𝑚 of 10:31 am
on July 3, 2020. SZA and 𝛼⊙ are 22.5◦ and 335.4◦ , respectively. Azimuth is measured in degrees counter-clockwise from East. Panels a and b show LandSat based NDVI and kNDVI.
Panels c and f are LandSat based NIRv before and after topographic correction. Panel i is the difference between panels c and f. Panels d and e are the frequency distribution of
NIRv before topographic correction plotted against NDVI and kNDVI. Panels g and h are the frequency distribution of NIRv after topographic correction plotted against NDVI and
kNDVI. In panels d, e, g, and h, the correlation coefficients (𝑟2) and root mean squared error (rmse) are grouped by absolute difference in NIRv before and after the topographic
correction.
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Fig. 9. Impact of topographic correction on surface reflectance in polar maps using the San Gabriel Mountains (CA, USA) as example, with a LandSat satellite overpass local time
𝑡𝑚 of 10:31 am on July 3, 2020. SZA and 𝛼⊙ are 22.5◦ and 335.4◦ , respectively. Azimuth is measured in degrees counter-clockwise from East. Panels a–c and f are the same as
Fig. 8a–c and f but in polar coordinates. Surface inclination is on the diameter axis, and surface azimuth is on the angular axis. the cosine of SIA is shown in panel d. Panel e is
the ratio of panel f to panel c.
In general, NDVI and kNDVI are higher on northwest facing slopes
(Fig. 9a–b), showing a clear preference for vegetation in a dry en-
vironment such as Los Angeles. Because the Sun is due East (𝛼⊙ is
335.1◦) at the time of the LandSat overpass, east facing slopes have a
smaller SIA (Fig. 9d) and receive more direct PAR. Therefore, raw NIRv
is higher on east facing slopes (Fig. 9c). Our topographic correction
decreases NIRv on southeast facing (sun facing in the morning) slopes
and increases NIRv on the northwest facing (sun shaded in the morning)
slopes (Fig. 9e).

Using NIRv without topographic corrections could result in a wrong
interpretation as to which surface slopes are more vegetated, as shown
in the stark differences between panels a and c in Fig. 9. While the
NIRv has shown a better correspondence with gross primary produc-
tion (Badgley et al., 2017), one has to keep this potential bias in mind,
as the NIRv looses one key advantage of the NDVI, namely that many
error sources cancel out in simple ratio approaches (Frankenberg et al.,
2021).

After the topographic correction, all three VIs are higher on north-
west facing slopes (Fig. 9a, b, and f), providing a consistent repre-
sentation of vegetation distribution as a function of surface orien-
tation. Our topographic correction is also comparable to a rigorous
semi-empirical modified cosine correction (Soenen et al., 2005; Teillet
et al., 1982)(Appendix A) proving that our general approach to correct
PAR (Eq. (6)) can properly account for the various illumination
10

direct
conditions due to topography. Therefore, we can apply the topographic
adjustment to the DCDEM calculation.

4.2.2. Topographic effects on DC
When calculating DCDEM, we consider the different 𝑡𝑚 and spatial

resolutions from TROPOMI and the upcoming Fluorescence EXplorer
(FLEX) mission. TROPOMI overpasses the San Gabriel Mountains at
1:29 pm LST on July 3, 2020, when SZA and 𝛼⊙ are 22.6◦ and 204.6◦ ,
respectively. FLEX has a prospective 𝑡𝑚 at 10:00 am LST (Drusch et al.,
2017), when the SZA and 𝛼⊙ are 27.9◦ and 343.7◦. The spatial resolu-
tion of TROPOMI is 5 km × 3.5 km at nadir (up to 14 km at the edges
of the swath) (Köhler et al., 2018). The prospective spatial resolution
of FLEX is 300 × 300 m2. We first calculate DCdem at the 30-m
DEM resolution and then aggregate DCDEM to the spatial resolutions of
TROPOMI and FLEX using LandSat NDVI as weights. Here, we neglect
topographic impact on the canopy structure, as we focus on the first-
order effect of topography, i.e. the amount of light reaching an inclined
surface area, and quantitatively analyze this effect against completely
neglecting the surface slops.

DEMtotal is homogeneous in the San Gabriel Mountains because
Eq. (4) omits the surface inclination and azimuth. However, DCDEM
calculated with Eq. (11) is a function of inclination and azimuth angles
as well as 𝑡𝑚. The theoretical ratio of DCDEM to DCtotal is demonstrated
in Fig. 10b and e. The overall magnitude of the theoretical DC
DEM
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Fig. 10. Topographic corrections on DC with various 𝑡𝑚 in San Gabriel Mountains. Panels a–c are the ratio of DCDEM to DCtotal, the ratio of theoretical DCDEM to DCtotal, and cosine
of SIA at 𝑡𝑚 of TROPOMI at 1:29 pm LST on July 3, 2020, when SZA and 𝛼⊙ are 22.6◦ and 204.6◦ , respectively. Azimuth is measured in degrees counter-clockwise from East.
Panel d–f are the same as a–c but at the prospective overpass of FLEX at 10:00 am LST, when SZA and 𝛼⊙ are 27.9◦ and 343.7◦. Panels b, c, e, and f are in polar coordinates, if
the surface inclination is from 0–90 ◦ , and the surface azimuth is from 0–360 ◦. The surface inclination is on the diameter axis, and surface azimuth is on the angular axis. The
grids in panels a and d are TROPOMI footprints, where the footprints with maximum and minimum NDVI-weighted DCDEM

DCtotal
are plotted in red and blue, respectively.
.

can be as large as 500% of DCtotal (Fig. 10b and e) at the 30-m DEM
resolution. These extremely large corrections can happen when the SIA
approaches or exceeds 90◦, at which only a very low amount of direct
PAR reaches the respective surface.

The pattern and amplitude of DCDEM also depend on 𝑡𝑚. When
TROPOMI overpasses the San Gabriel Mountains, the northeast facing
(sun-shaded) slopes have higher DCDEM than the southwest facing
(sun-facing in the afternoon) slopes (Fig. 10b and c). Other sensors
may overpass the same region at different 𝑡𝑚 resulting in different
patterns and magnitudes in DCDEM. For example, when FLEX over-
passes 10:00 am LST, the northwest facing (sun-shaded in the morning)
slopes have higher DCDEM than the southeast facing (sun-facing) slopes
(Fig. 10e and f).

For SIF observed from satellites, the topographic impact on DC
is aggregated among the sub-pixels within satellite footprints. In the
San Gabriel Mountains, the topographic dependence of illumination
and vegetation distribution covary at the sub-pixel scale. Regions with
a larger ratio of DCDEM to DEMtotal also have higher NDVI at both
overpass time (Figs. 11h and 12h). According to Fig. 9, these sub-pixels
with high NDVI values mostly face north, as expected in a semi-arid
climate. Therefore, to account for the varying vegetation coverage
across sub-pixel slopes in the aggregated DCDEM over TROPOMI and
FLEX footprints, we average the sub-pixel variations of DCDEM in each
footprint by weighting them by NDVI (Deng et al., 2007; Turner et al.,
2020).

Our results show that although the full dynamic range of DCDEM
at 30-m sub-pixel resolution is 75%–500% of DCtotal (Fig. 10a–b and
d–e), the TROPOMI footprint with the maximum NDVI-weighted mean
DCDEM in the scene (red outline) is only 9% larger than DCtotal (Fig. 11a)
On the other extreme, the TROPOMI footprint with the minimum NDVI-
weighted mean DCDEM (blue outline) is only 1% larger than DCtotal
(Fig. 12a). The bias dynamic range is thus on the order of about
10% for TROPOMI. The upcoming FLEX mission has a much finer
footprint (300 × 300 m2, Coppo et al. 2017). Thus, for increasingly
smaller footprints, such as for FLEX (grids in Figs. 11c–d and 12c–d), a
topographic slope correction will become more important.
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In summary, if one wants to study vegetation dynamics in moun-
tains, corrections on both SIF and surface reflectance play a crucial
role, as otherwise even the greenness variations as a function of surface
slope and orientation can be severely misinterpreted. While individ-
ual effects of highly tilted surfaces can be substantial, they might
be reduced at coarser spatial scales, where mean slopes are smaller.
For very rugged terrain like the San Gabriel Mountains, the sub-pixel
variations are mostly smoothed out within the comparatively coarse
TROPOMI footprint (grids in Fig. 10). Other mountain ranges might
have more spatially extended slopes, which could even be important for
coarser-scale sensors such as TROPOMI. Overall, biases in the length-
of-day correction due to surface slopes are of similar magnitude as
the overall atmospheric effects but will become increasingly crucial for
high surface slopes and for smaller footprints sizes.

5. Discussion

5.1. Significance of atmosphere on DC

In this study, we use reanalysis PAR data to evaluate the impact
of neglected atmospheric extinction in the conventional calculation
of DC for SIF. We find that the overall bias in the simple geometric
approach that is widely used in SIF studies is surprisingly small, both
for cloudy and cloud free conditions. In most case, the bias is smaller
than 10% at coarse spatial and temporal scales. The main reason for
the small bias is a compensating effect of a reduction in direct light
and enhancement of diffuse light when clouds and aerosols are present.
To be more accurate, our proposed DC corrections can use actual PAR
data from meteorological reanalysis data but in most cases, the simple
DCSZA should suffice and our results support the previously unvalidated
simple approach to scale instantaneous SIF to daily averages.

5.2. Significance of clear sky bias in temporal averages

When SIFdc is upscaled in time, e.g. to monthly averages, changes in
daily PAR within the averaging window should be taken into account,
especially in regions with low measurement yields due to frequent
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Fig. 11. In the TROPOMI footprint with maximum NDVI-weighted mean DCDEM
DCtotal

(the red outlined footprint in Fig. 10), DCDEM
DCtotal

of all sub-pixels is presented in a histogram (panel a)
and a zoomed-in map (panel c) when 𝑡𝑚 is at TROPOMI overpass (1:29 pm LST on July 3, 2020). Panels b and d are the same as panels a and c but at prospective FLEX overpass
(10:00 am LST on July 3, 2020). The black lines in panels a and b indicate the ratio of NDVI-weighted mean DCDEM to DCtotal in this TROPOMI footprint. The red frame in all
maps depicts actual TROPOMI footprint. The grids in (c) and (d) are the prospective FLEX footprints.
cloud cover. This way, the upscaled monthly SIF is not biased by SIF
measurements from clear days only. We find that seasonal clear-sky
biases can be on the order of 25% larger than most of the biases
in the simple DC correction. While our approach uses just reanalysis
data, one might also apply actual PAR measurements at field sites for
the correction, if available. However, only reanalysis data can provide
corrections for the clear sky bias at global scales.

5.3. Significance of topography on DC

Topography can be an important factor to consider for interpreting
satellite measured SIF as well as NIRv in complex terrain because
their magnitudes depend on the radiation projected on tilted surfaces.
The significance of topographic corrections on SIF and NIRv depends
on the relative scale of surface roughness and satellite footprints. For
example, the impact of very rugged terrain in San Gabriel Mountains is
12
mostly smoothed out within kilometer-wide TROPOMI footprints, while
the topography can be significant in the footprints of upcoming FLEX
mission which has 300-wide footprints.

The topographic impact on DC also compounds with the dependence
of vegetation distribution on topography. Thus, the heterogeneous
vegetation distribution should be considered when aggregating varying
sub-pixel DC due to topography. In the meantime, topographically
corrected SIF and VIs in fine spatial resolutions can benefit vege-
tation studies across environmental gradients related to topography,
which are restricted by conventional observation tools, such as Eddy
Covariance techniques.

5.4. Uncertainties in explicitly expressed DC models

The current calculation for DCtotal and DCDEM may inherit errors
from the reanalysis data. For example, we assume PAR is a constant
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Fig. 12. In the TROPOMI footprint with minimum NDVI-weighted mean DCDEM
DCtotal

(the blue outlined footprint in Fig. 10), DCDEM
DCtotal

of all sub-pixels is presented in a histogram (panel a)
and a zoomed-in map (panel c) when 𝑡𝑚 is at TROPOMI overpass (1:29 pm LST on July 3, 2020). Panels b and d are the same as panels a and c but at prospective FLEX overpass
(10:00 am LST on July 3, 2020). The black lines in panels a and b indicate the ratio of NDVI-weighted mean DCDEM to DCtotal in this TROPOMI footprint. The blue frame in all
maps depicts actual TROPOMI footprint. The grids in (c) and (d) are the prospective FLEX footprints.
fraction of shortwave radiation at the surface since the current ERA5
version does not provide accurate PAR data. The absolute value of this
constant is less important here since it is canceled out when calculating
DCs. However, this assumption may not hold since the atmospheric
scattering along the light path is wavelength dependent (Bates, 1984).
Blue light is more sensitive to Rayleigh scattering than longer wave-
lengths. Under different cloud cover and light path lengths, the spectral
shape of incident PAR at the surface can be different from the spectral
shape at the top of atmosphere, which would require a scene dependent
scaling factor between short-wave totals and PAR. To further improve
the accuracy of DCs, accurately calculated PAR data should be used
when it is published in future ERA5 versions. In the future, analyzing
the uncertainty caused by reanalysis data and validating the result with
in-situ PAR data might be needed.

In addition, future corrections might treat direct and diffuse light
separately and take into account that GPP can saturate at high PAR
levels while SIF is only mildly reduced. A simple non-linear scaling
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function for PAR in all our correction schemes could takes some of
these effects into account but is omitted here as we wanted to focus
on potential biases under the most benign assumptions.

6. Conclusion

Instantaneous SIF measurements require correction factors to scale
these measurements to daily averages, which can then be aggregated
within longer time scales. We focus on three factors impacting daily
average SIF and its temporal averages spanning multiple days: atmo-
spheric scattering, clear-sky biases, and topography. Overall, we find
that the simple and frequently used DCSZA approach is a convenient
yet surprisingly accurate tool for calculating DC on a flat surface, which
yields less than 10% biases compared to using exact PAR. In extreme
cases, such as a high SZA at 𝑡𝑚 and cloudy days, using DCSZA is less
accurate for SIFdc and its seasonality since the biases can reach up to
20%.
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Fig. A.1. (a) original NDVI; (b) topography corrected NDVI; (c) topography corrected NDVI/original NDVI; (d) cos(SZA) at LandSat overpass time (10:31 am on July 3, 2020);
(e) original kNDVI; (f) topography corrected kNDVI; (g) topography corrected kNDVI/original kNDVI; (h) same as (d); (i) original NIRv; (j) topography corrected NIRv; and (k)
topography corrected NIRv/original NIRv; and (l) same as (d). In these polar maps, surface slope is on the diameter axis, and surface aspect is on the angle axis.
-

When aggregating measurements in time, we find that clear-sky
biases can arise. For regions experiencing significant seasonal changes
in cloudiness, PAR-weighted monthly mean SIF benefits the interpre-
tation of SIFdc seasonality. This can even compound the interpretation
of seasonal SIF dynamics that have a low seasonal dynamic range in
SIF but large variations in cloudiness. This holds for the Amazon basin
in regions with distinct dry and wet seasons, for which SIF in periods
with frequent cloudiness can be overestimated by about 25%, which
is significant given the overall seasonal dynamic range in SIF is only
±20%.

For complex terrains, we find that an additional correction for
surface slopes and orientation is required. Our topographically cor-
rected expression for DC is not negligible, specifically for satellites with
small footprints, which can observe highly tilted surfaces within their
footprints. In our examples, the biases in DC due to topography can be
up to 500% and also impact reflectance measurements, especially the
novel NIR𝑣 index.

As more space-borne SIF measurements become available, our length
of-day correction and monthly averaging methods are useful for homog-
enizing and comparing SIF measurements across a variety of overpass
14
and spatiotemporal scales. In complex terrain, including the topography
to the calculation of DC is especially critical for satellites with finer
footprints but can also be relevant for coarser spatial scales, e.g. if
regions of the size of the satellite footprint are sloped.
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Table B.1
The names of variables used in this study and their names in ERA5 products.

Variables used in this study ERA5 variable names

clear-sky PARdirect 0.46 × Clear-sky direct solar radiation at surface

PARdiffuse 0.46 × (Surface solar radiation downward, clear sky - Clear-sky direct solar radiation at surface)

all-sky PARdirect 0.46 × Total sky direct solar radiation at surface

PARdiffuse 0.46 × (Surface solar radiation downwards - Total sky direct solar radiation at surface)
Fig. C.1. The mean SZA at 𝑡𝑚 per 16 days averaged over December, January, and February (left panel) and June, July, and August (right panel).
Fig. C.2. The total numbers of unfiltered soundings (N) per 16 days averaged over December, January, and February (left panel) and June, July, and August (right panel).
topographic correction (Soenen et al., 2005). For less-vegetated pixels
(NDVI≤0.3), we use the slope-aspect correction (Teillet et al., 1982).
The C factor in both corrections were calculated from regressing the
surface reflectance and cos(SZA) in less-vegetated pixels. Thus, the
C factor is wavelength-dependent. This explains the small changes
in NDVI and kNDVI after the correction in Fig. A.1. Overall, the
corrected NIRv using our method (Fig. 9e–f) is very similar to using
the semi-empirical correction method for R (Fig. A.1j–k).

Appendix B. Details of calculating PARdirect and PARdiffuse using
ERA5 reanalysis data

See Table B.1.
15
Appendix C. Maximum number of soundings

We use the same gridded SIF product as Section 4.1.3.1, which
is aggregated from individual SIF measurements in 2020 and has a
temporal resolution of 16 days and a spatial resolution of 0.0833◦ ×
0.0833◦. The number of averaged soundings per grid cell is n in cloud-
filtered and 𝑁 in unfiltered cases, the latter of which represents the
total number of potential TROPOMI soundings.

The maximum numbers of soundings are higher at high latitudes
(Fig. C.2) because of overlapping ground tracks. However, due to larger
SZA (Fig. C.1), the measurement yield is smaller at high latitudes
(Fig. 5).
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Appendix D. List of variables

Acronym Term
𝑡 Time
𝑡𝑚 Time of measurement
SZA Solar zenith angle
𝛼⊙ Solar azimuth angle
𝜇 Cosine of SZA
𝛽 Surface inclination angle
𝛼 Surface azimuth angle
SIA Solar incidence angle
SIF𝑡𝑚 Instantaneous SIF at 𝑡𝑚
SIFdc Daily-average SIF
PAR Photosynthetic active radiation
PARdirect Direct PAR
PARdiffuse Diffuse PAR
DC Length-of-day correction factor
DCSZA Conventional DC using cosine SZA
DCdirect DC using PARdirect only
DCtotal DC using both PARdirect and PARdiffuse
PARdirect, DEM Direct PAR corrected by surface topography
DCDEM DC considering surface topography
R Reflectance
RDEM Topographically corrected R
n Number of cloud-filtered soundings
N Number of total amount of soundings (before

cloud filtering)
PARday Daily mean PAR
PARmonth Monthly mean PAR
SIF Monthly mean SIF
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