In chronological order:

[12] Cheng, R. (2024), Solar-Induced chlorophyll Fluorescence (SIF): Towards a Better Understanding of Vegetation Dynamics and Carbon Uptake in Arctic-Boreal Ecosystems. Current Climate Change Reports, https://doi.org/10.1007/s40641-024-00194-8

[11] Pierrat, Z.A., Magney, T.S., Cheng, R., Maguire A., Wong C., Nehemy M., Rao M.P., Nelson S.E., Williams A.F., Grosvenor J.A.H., Smith K.R., Reblin J.S., Stutz J., Richardson A., Logan B.A., Bowling D.R., (2024) The biological basis for using optical signals to track evergreen needleleaf photosynthesis. BioScience, biad116, https://doi.org/10.1093/biosci/biad116

[10] Kunik, L., Raczka, B., Smith, K.R., Bowling, D., Frankenberg, C., Köhler, P., Cheng, R., Goulden, M.L., Jung, M., & Lin, J.C. (2023), Satellite-based solar-induced fluorescence tracks seasonal and elevational patterns of photosynthesis in California’s Sierra Nevada mountains. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad07b4

[9] Cheng, R., Magney, T.S., Orcutt, E.L., Pierrat, Z., Köhler, P., Bowling, D.R., Bret-Harte, M.S., Euskirchen, E.S., Jung, M., Kobayashi, H., Rocha, A.V., Sonnentag, O., Walther, S., Zona, D., &Frankenberg, C. (2022), Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac9dae

[8] Cheng, R., Köhler, P., & Frankenberg, C. (2022), Impacts of Topography and Radiation on Temporal Upscaling of Instantaneous Solar-Induced Chlorophyll Fluorescence, Agricultural and Forest Meteorology. [published version by request, accepted preprint]

[7] Byrne, B., Liu, J., Yi, Y., Chatterjee, A., Basu, S., Cheng, R., Doughty, R., Chevallier, F., Bowman, K.W., Parazoo, N. C., Crisp, D., Li, X., Xiao, J., Sitch, S., Guenet, B., Deng, F., Johnson, M. S., Philip, S., Mcguire, P. C., and Miller, C. E. (2022), Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia. Biogeosciences. https://doi.org/10.5194/bg-19-4779-2022

[6] Cheng, R., Novak, L., & Schneider, T., 2021. Predicting the interannual variability of California’s total annual precipitation. Geophysical Research Letters, 48, e2020GL091465. https://doi.org/10.1029/2020GL091465

[5] Cheng, R., Magney, T.S., Dutta, D., Bowling, D.R., Logan, B.A., Burns, S.P., Blanken, P.D., Grossmann, K., Lopez, S., Richardson, A.D. and Stutz, J., 2020. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences, 17(18), pp.4523-4544. https://doi.org/10.5194/bg-17-4523-2020

[4] Seyednasrollah, B., Bowling, D.R., Cheng, R., Logan, B.A., Magney, T.S., Frankenberg, C., Yang, J.C., Young, A.M., Hufkens, K., Arain, M.A. and Black, T.A., 2020. Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytologist. https://doi.org/10.1111/nph.17046

[3] Felzer, B.S., Ember, C.R., Cheng, R. and Jiang, M., 2020. The Relationships of Extreme Precipitation and Temperature Events with Ethnographic Reports of Droughts and Floods in Nonindustrial Societies. Weather, Climate, and Society, 12(1), pp.135-148. https://doi.org/10.1175/WCAS-D-19-0045.1

[2] Magney, T.S., Bowling, D.R., Logan, B.A., Grossmann, K., Stutz, J., Blanken, P.D., Burns, S.P., Cheng, R., Garcia, M.A., Kӧhler, P. and Lopez, S., 2019. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences, 116(24), pp.11640-11645. https://doi.org/10.1073/pnas.1900278116

[1] Zhang, D., Qiu, G., Gao, Y., Fang, X., Cheng, R., Chang, A. and Chan, C.Y., 2014, October. Crowdsourcing based radio map anomalous event detection system for calibration-on-demand. In 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 220-229). IEEE.